Learn French 100% free Get 1 free lesson per week // Add a new lesson
Log in!

> Log in <
New account
Millions of accounts created on our sites.
JOIN our free club and learn French now!




Get a free French lesson every week!

  • Home
  • Contact
  • Print
  • Guestbook
  • Report a bug


  •  



    Aide pour les Trinômes

    Cours gratuits > Forum > Forum maths || En bas

    [POSTER UNE NOUVELLE REPONSE] [Suivre ce sujet]


    Aide pour les Trinômes
    Message de amazoniamania posté le 15-09-2012 à 13:24:59 (S | E | F)
    Bonjour,
    je viens vers vous pour chercher un peu d'aide concernant les trinômes, je bloque sur la question suivante :

    Montrer dans le cas général (quels que soient a et B choisis), que les nombres a et b sont toujours racines du trinôme
    x²-(a+b)x+ab.

    je vous en remercie par avance pour votre aide en attendant je continue mes autres questions
    amazoniamania


    Réponse: Aide pour les Trinômes de altibo, postée le 15-09-2012 à 14:59:45 (S | E)
    Bonjour,
    Peut-être par remplacer x par l'une des soit disant racines de ce trinôme, c'est-à-dire a ou b?
    Bonne continuation,
    Alti



    Réponse: Aide pour les Trinômes de altibo, postée le 15-09-2012 à 16:03:08 (S | E)
    Re-Bonjour,
    Ou version certainement plus attendue, en résolvant ce trinôme avec le discriminant
    et en trouvant les valeurs des racines de l'énoncé, c'est-à-dire a et b!
    Alti



    Réponse: Aide pour les Trinômes de danyy, postée le 15-09-2012 à 19:47:09 (S | E)
    Bonjour !

    Je pense que tu devrais résoudre cette question en calculant comme d'habitude, c'est-à-dire:

    1/ Calculer le discriminant Delta: b²- 4ac.

    Dans notre cas cela donnerait: Delta: (a+b)²-4*1*(ab)= a²+b²+2ab-4ab= a²+b²- 2ac.

    2/ Ensuite cherche les racines: x',x".
    Tu fais la même procédure que normalement.


    J'espère que tu as compris, bonne chance !



    Réponse: Aide pour les Trinômes de amazoniamania, postée le 16-09-2012 à 08:49:10 (S | E)
    Bonjour,
    Jusqu'ici j'avais compris et réussi. Cependant, c'est lors que je calcule les deux racines que cela bloque:

    x' = (b-√(D))/2a ou x" = (-b-√(D))/2a

    x' = (-a-b -√(a²+b²-2ab))/2a ou x" = (-a-b +√(a²+b²-2ab))/2a

    Je me demande donc comment je peux calculer la racine carré... Sachant qu'au final je dois retomber sur: x'=a et x"=b

    merci pour votre aide

    amazoniamania

    -------------------
    Modifié par amazoniamania le 16-09-2012 09:37





    Réponse: Aide pour les Trinômes de amazoniamania, postée le 16-09-2012 à 11:26:03 (S | E)
    Bonjour,

    J'ai alors factorisé Delta et voila ce que cela me donne:

    x' = (-b+√(D))/2a ou x" = (-b-√(D))/2a
    x' = (-a-b+√(a-b)²)/2a ou x" = (-a-b-√(a-b)²)/2a
    x' = (-a-b+a-b)/2a ou x" = (-a-b-a-b)/2a
    x' = (-2b)/2a ou x" = (-2(a+b))/2a
    x' = -b/a ou x" = -(a+b)/a

    Mais c'est bizarre car j'étais censé retomber sur a et sur b... c est bizarre non

    quelqu un peut il venir à mon aide

    un grand merci
    amazoniamania






    Réponse: Aide pour les Trinômes de wab51, postée le 16-09-2012 à 11:56:33 (S | E)
    Bonjour
    x' = (-b+√(D))/2a ou x" = (-b-√(D))/2a (correct)
    x' = (-a-b+√(a-b)²)/2a ou x" = (-a-b-√(a-b)²)/2a
    Il fallait voir que b= - (a+b) donc -b = (a+b) .Donc reprend le calcul de x' et x" en tenant compte que -b = (a+b)?
    et plus pour x" ,il faut voir que -√(D) = - (a-b)= -a + b .Il suffit donc de bien remplacer ses valeurs dans x' et dans x" pour obtenir le bon résultat cherché .Bon courage



    Réponse: Aide pour les Trinômes de amazoniamania, postée le 16-09-2012 à 15:14:13 (S | E)
    Bonjour,

    Donc si je reprends:

    x' = (-b+√(D))/2a ou x" = (-b-√(D))/2a
    x' = (a+b+a-b)/2a ou x" = (a+b-a+b)/2a
    x' = 2a/2a ou x" = 2b/2a
    x' = a ou x" = b/a

    C'est cela ?
    Et je vous remercie pour le temps que vous m'accordez... et je sais que j'en prend beaucoup

    Amazoniamania



    Réponse: Aide pour les Trinômes de wab51, postée le 16-09-2012 à 16:14:29 (S | E)
    Bonjour :
    Voici le trinôme :x²-(a+b)x+ab.

    x' = (-b+√(D))/2a ou x" = (-b-√(D))/2a
    Ton erreur vient du fait de la confusion en considérant la même désignation entre le a de la formule donnant les deux racines x' et x" et que tu as écris au dénominateur (/2.a )et qui exprime le facteur de x² =1.x² qui est 1 ,et le nombre a comme nombre
    dans ce trinôme x²-(a+b)x+ab.
    Autrement dit ,ton raisonnement est donc juste ,simplement tu as oublié de remplacer la valeur de a=1 dans le dénominateur 2.a =2 x1 =2 . Corrige ce qui est en rouge et tu obtiendras sans difficulté x'=a et x"=b
    x' = (a+b+a-b)/2a ou x" = (a+b-a+b)/2a
    x' = 2a/2a ou x" = 2b/2a .



    Réponse: Aide pour les Trinômes de nick94, postée le 16-09-2012 à 16:21:44 (S | E)
    Bonjour,
    La question est :
    Montrer dans le cas général (quels que soient a et b choisis), que les nombres a et b sont toujours racines du trinôme
    x²-(a+b)x+ab.
    Il suffit donc d'appliquer la première proposition de altibo :
    remplacer x par a et vérifier qu'il annule l'expression de même pour b.



    Réponse: Aide pour les Trinômes de wab51, postée le 16-09-2012 à 16:36:30 (S | E)
    Bonjour Nick et content de vous rejoindre .Effectivement ,c'est une excellente idée .J'y avais pensé mais le voyons déjà engager dans cette 1ère proposition ,j'y pensais à ne pas bousculer les choses .Merci beaucoup Nick et très bonne journée .




    [POSTER UNE NOUVELLE REPONSE] [Suivre ce sujet]


    Cours gratuits > Forum > Forum maths