Learn French 100% free Get 1 free lesson per week // Add a new lesson
Log in!

> Log in <
New account
Millions of accounts created on our sites.
JOIN our free club and learn French now!




Get a free French lesson every week!

  • Home
  • Contact
  • Print
  • Guestbook
  • Report a bug


  •  



    Inéquation du second degrès

    << Forum maths || En bas

    [POSTER UNE NOUVELLE REPONSE] [Suivre ce sujet]


    Inéquation du second degrès
    Message de elodie30 posté le 04-10-2010 à 21:07:28 (S | E | F)
    Bonjour, je souhaiterais obtenir de l'aide pour résoudre une inéquation dont je ne trouve pas la solution :/
    L'équation: Racine2x²-x > 2x-3
    Merci d'avance.
    -------------------
    Modifié par bridg le 04-10-2010 21:25



    Réponse: Inéquation du second degrès de taconnet, postée le 04-10-2010 à 22:46:08 (S | E)
    Bonjour.

    Voici un début.

    1- recherchez les valeurs de x pour lesquelles 2x² -x ≥ 0

    2-L'inégalité a>b est équivalente à a²>b² à condition que a>0 et b>0.

    Après avoir posé les conditions de possibilité écrivez :

    <══>

    Vous serez amenée à déterminer le signe d'un trinôme du second degré.



    Réponse: Inéquation du second degrès de elodie30, postée le 05-10-2010 à 19:31:20 (S | E)
    D'accord. Merci beaucoup !



    Réponse: Inéquation du second degrès de elodie30, postée le 05-10-2010 à 19:40:00 (S | E)
    Désolé de vous embeter encore, mais est-ce que pour les valeurs pour que x soit supérieur a 2x²-x faut-il bien que x soit supérieur a 1/2 ?



    Réponse: Inéquation du second degrès de elodie30, postée le 05-10-2010 à 19:55:25 (S | E)
    Si j'écris Racine2x²-x > 2x-3 <══> 2x²-x > (2x-3)²
    Il faut que je développe (2x-3)² et ensuite je cherche le discriminant ?
    Parce que si je fais sa, j'ai un soucis parce que je trouve que le discriminant est égal a 120 et racine de 120 cela fait un nombre à virgule



    Réponse: Inéquation du second degrès de elodie30, postée le 05-10-2010 à 20:01:32 (S | E)
    Excusez-moi, erreur de calcul je trouve un discriminant égale à 0 donc je trouve que la racine double est égal a 3



    Réponse: Inéquation du second degrès de taconnet, postée le 05-10-2010 à 20:13:13 (S | E)
    Bonjour.

    Vous devez trouver :

    -2x² + 11x - 9

    Vous remarquerez que 1 est une racine évidente donc l'autre racine est aussi évidente(pensez au produit des racines)
    Voici un lien:
    Lien Internet



    Autre calcul.

    2x² - x = x(2x - 1)

    2x²- x > 0 si x(2x-1) > 0

    Il faut donc déterminer le signe de ce produit.

    2x² - x > 0 <══> x ∈ ]-∞ ; 0[ ∪ ]1/2 ; + ∞[




    Réponse: Inéquation du second degrès de elodie30, postée le 05-10-2010 à 20:16:36 (S | E)
    Je ne comprends pas pourquoi vous trouvez -2x² + 11x - 9




    Réponse: Inéquation du second degrès de elodie30, postée le 05-10-2010 à 20:19:36 (S | E)
    J'ai trouvé :D Merci beaucoup de votre aide



    Réponse: Inéquation du second degrès de elodie30, postée le 05-10-2010 à 21:06:44 (S | E)
    Je voudrais juste savoir si le résultat que je dois trouver et bien le suivant:
    S= ]-infinit;0] U [1/2;1] U [4.5;+infinit[



    Réponse: Inéquation du second degrès de taconnet, postée le 05-10-2010 à 22:26:32 (S | E)
    Malheureusement non !

    Une simple vérification suffit.

    pour x = 5 , on obtient:

    √45 < 7



    Réponse: Inéquation du second degrès de elodie30, postée le 06-10-2010 à 11:49:56 (S | E)
    Je ne comprends définitivement rien --'



    Réponse: Inéquation du second degrès de taconnet, postée le 06-10-2010 à 11:58:24 (S | E)
    Bonjour.

    Ne perdez pas de vue que si x < 3/2 alors 2x - 3 < 0






    Réponse: Inéquation du second degrès de elodie30, postée le 06-10-2010 à 12:27:31 (S | E)
    Dans mon tableau de signe, j'ai les valeurs
    0 ; 1/2 ; 1 ; 3/2 ; 4.5 ?



    Réponse: Inéquation du second degrès de taconnet, postée le 06-10-2010 à 12:57:43 (S | E)
    Si x > 9/2 que se passe-t-il ? par exemple x =5
    Si x < 9/2 que se passe-t-il ? par exemple x = 4



    Réponse: Inéquation du second degrès de elodie30, postée le 06-10-2010 à 13:09:03 (S | E)
    Je trouve que pour x=5
    Racine2x²-x > 2x-3 ; 45 > 7
    Je trouve pour x=4
    Racine2x²-x > 2x-3 ; 28 > 5



    Réponse: Inéquation du second degrès de taconnet, postée le 06-10-2010 à 18:52:42 (S | E)
    N'oubliez pas qu'il s'agit de √(2x²-x) à comparer à 2x-3 !




    [POSTER UNE NOUVELLE REPONSE] [Suivre ce sujet]


    << Forum maths