<< Forum maths || En bas
Message de ciiia posté le 04-11-2009 à 17:50:52 (S | E | F)
Bonjour, je n'arrive pas à résoudre une question de mon DM :
La droite de Simson :
Soit un triangle ABC et un point M. Soit P, Q et R les projetés orthogonaux de M respectivement sur les droites (BC) (CA) et (AB) .
- Démontrer que les points B R P et M sont cocycliques, on précisera le diamètre du cercle.
J'ai déja répondu a cette question , j'ai prouvé qu'ils étaient cocycliques grace aux triangles rectangles inscrits dans le cercle (grace aux projetés orthogonaux) et j'ai trouvé que le diamètre du cercle était [BM].
-Exprimer (PR, PM) uniquement à l'aide des points A B et M
-Exprimer (PR, PQ) uniquement à l'aide des points A C et M
-Exprimer (PR, PQ) en fonction des mesures des angles précédents et montrer que dans ces conditions P Q et R sont alignés si et seulement si A B C et M sont cocycliques.
Voila c'est pour ces 3 questions que je bloque... Pourriez vous m'aider svp ? Mais ne pas me doner la réponse, j'aimerais trouver de moi même ..
-------------------
Modifié par ciiia le 04-11-2009 17:51
-------------------
Modifié par ciiia le 04-11-2009 17:52
Réponse: 1eS- exprimer 1 angle avec d'autre p de taconnet, postée le 04-11-2009 à 19:21:10 (S | E)
Bonjour.
En examinant la figure que pouvez-vous dire des angles
(MC', MA) et (B'C', B'A) ?
puis
(MC, MA') et (B'C, B'A') ?
Si on suppose que A', B', C' sont alignés que dire alors des angles
(B'C',B'A) et (B'C, B'A') ?
Que dire alors des angles (MC', MA') et (MA , MC)?
Rappel dans un quadrilatère inscriptible, les angles opposés sont supplémentaires
<< Forum maths