Learn French 100% free Get 1 free lesson per week // Add a new lesson
Log in!

> Log in <
New account
Millions of accounts created on our sites.
JOIN our free club and learn French now!




Get a free French lesson every week!

  • Home
  • Contact
  • Print
  • Guestbook
  • Report a bug


  •  



    Inéquation par récurrence

    Cours gratuits > Forum > Forum maths || En bas

    [POSTER UNE NOUVELLE REPONSE] [Suivre ce sujet]


    Inéquation par récurrence
    Message de svphelp posté le 22-02-2022 à 01:37:58 (S | E | F)
    Bonsoir, j'ai vraiment besoin d'aide je suis désespérée svp.
    La question est la suivante :
    "Démontrer alors que pour tout entier naturel n non nul : Un >= ln(n+1)"
    Sachant que :
    Un= 1 + 1/2 + 1/3 +...+1/n
    Un+1= Un + 1/n+1
    U1= 1
    U2=1,5
    U3=11/6
    U20=3,60
    U100=5,19
    U500=6,79
    ln(1+x)<= x
    ln(n+1)-ln(n)<= 1/n
    Voilà c'est toutes les informations qui me sont données. Je sais également qu'il faut répondre à la question par une démonstration par récurrence
    Merci d'avance !
    PS: <= veut dire inférieur ou égal


    Réponse : Inéquation par récurrence de tiruxa, postée le 22-02-2022 à 11:05:10 (S | E)
    Bonjour

    Bienvenue sur ce site.

    Bon l'hypothèse de récurrence est Un >= ln(n+1)

    On doit démontrer que Un+1 >= ln(n+2)

    Or Un+1 - Un = 1/(n+1)

    et 1/(n+1) >= ln(n+2) - ln(n+1) (d'après ln(n+1)-ln(n)<= 1/n, pour tout n >0)

    donc Un+1-Un >= ln(n+2) - ln(n+1)

    ou Un+1 >= ln(n+2) - ln(n+1) + Un

    Comme par hypothèse de récurrence - ln(n+1) + Un est positif cella permet de conclure.



    Réponse : Inéquation par récurrence de chezmoi, postée le 24-02-2022 à 18:35:57 (S | E)
    Bonsoir,
    Avez-vous pensé de y = ln(x)
    Dessinez une graphique
    Calculez ∫ln(x) dx ?
    Et...

    de ma part et bonne chance !



    Réponse : Inéquation par récurrence de chezmoi, postée le 13-03-2022 à 19:10:06 (S | E)
    Bonsoir
    Voici des indices...
    Intégral riemann

    Δx = 1/n
    f(xi) = ?
    La somme...

    Bonne chance




    [POSTER UNE NOUVELLE REPONSE] [Suivre ce sujet]


    Cours gratuits > Forum > Forum maths